

CANNOCK CHASE U3A SCIENCE & TECHNOLOGY GROUP

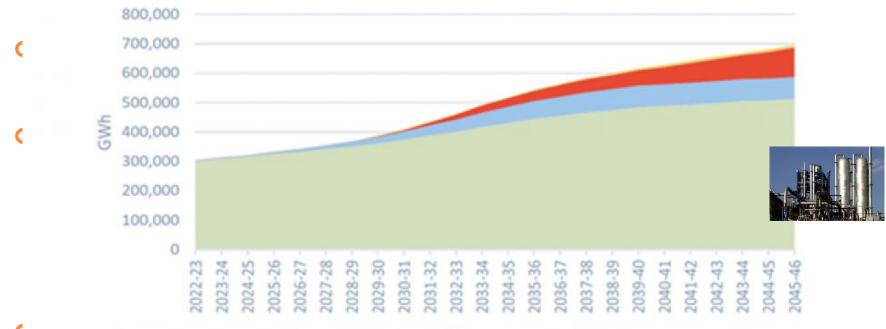
HOP ON - ALL ELECTRIC CARS BY 2040? 2030?

Tory Government announcement July 2017, phasing out petrol & diesel cars Can it really happen?

THE UNIVERSITY OF THE THIRD AGE

THE TARGET

- No more solely petrol or diesel cars sold after 2030.
- All petrol & diesel cars and vans to be "electric" by 2040
 - To improve air quality, particularly in cities and on main roads from petrol & diesel emissions and CO2.
- 40,000 deaths attributed to nitrogen oxides in the UK/ann However...
- No target on trucks in City Centres


- No target on Buses & Coaches in City centres
- No target on Diesel trains stopping at City Centres
 - Many electification programs have been cancelled (2017)
- No target on trucks delivering across the channel
- No target on introducing alternative fuels?

$1 \text{ GW} = 1 \text{ billion or } 10^9 \text{ W}$

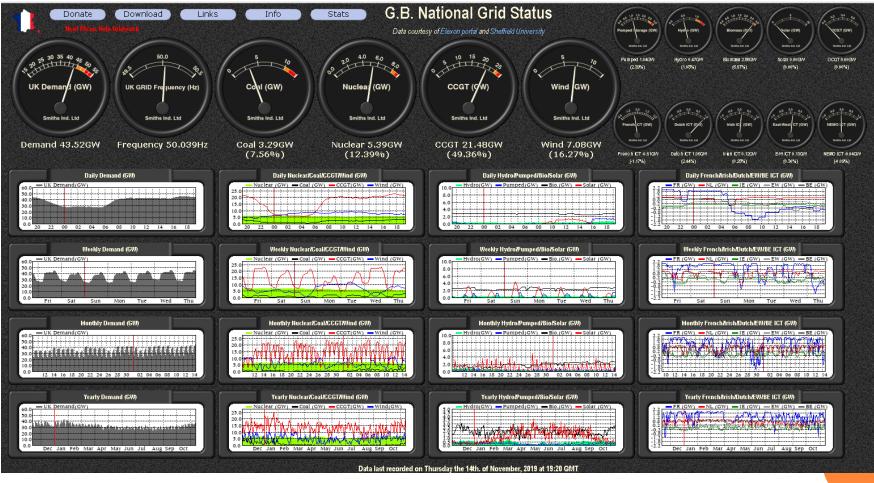
THE IMPLICATIONS

Figure 1: Electricity demand forecast – Central Scenario

🎟 Underlying electricity demand 🔳 EV charging 📕 H2 electrolysis 📕 Direct Air Carbon Capture

Source Cornwall Insight

Note: These volumes do not include load to meet exports to interconnected markets, load to service pumped storage hydro or batteries


- By 2050 with all electric, extra demand could be +18GW
- (Current grid peak capacity is 55-60GW) needs +32%
- How will this power be generated, with zero emission?

TAKE A LOOK AT GRIDWATCH

Most sources are fossil fuels still. How is additional 8-18GW demand going to work? Includes:

Biomass, Solar & Hydro. French link, Dutch link, Irish link, Wales/Ire link, Belgian link.

https://www.gridwatch.templar.co.uk/

Nov14th 2019)

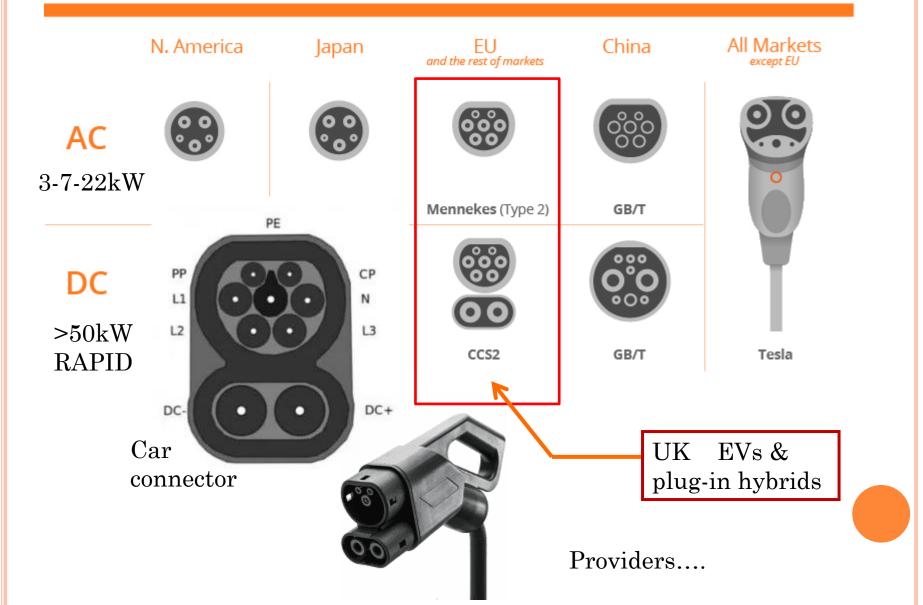
AC C

TURE – CHARGING EV

How? AC charge depends on rating of car onboard charger **0kW to 150kW+.**

• Home Charging (3kW or 7kW AC)

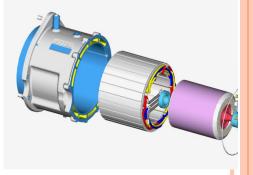
- Slower charge, several hours currently (up to 20).
- What if you live in a terraced house or high rise block?


o Public charging points

- 60+ different providers of charge points
- 60+ different accounts, apps, RFID card, or subscriptions needed to operate them, some use contactless cards.
- Tesla have their own system, no-one else can use.
- Currently around 42,000 in the UK, mixture of types.
- 400,000 charge points would cost £30bn by 2035 (for 1 in 3 cars being electric) + the electricity demand! [lamposts?]
- Public rapid points can be expensive electricity, at 40p/kwh.

2. THE INFRASTRUCTURE AND THE EV CHARGE CONNECTOR LINE UP...

3. THE INFRASTRUCTURE - DISPOSAL

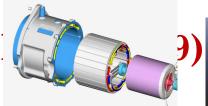

Disposal & Recycling

- 1 million cars scrapped each year in UK.
- Batteries (toxic chemicals in Li-ion)
- Cobalt and lithium could be recovered.
- Power inverter electronics
- Motors (rare earth magnets Neodymium)
- Existing petrol & diesel cars disposal by 2030 (Tens of millions)

4. TAXATION & SUBSIDIES

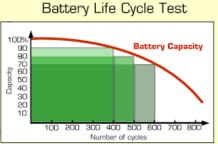
• Currently, approx 80% tax on petrol & diesel

- Current fuel duties amount to £28bn/annum
- What will the Chancellor do?
- Where will it then come from? Tax on electricity?
- Road Tax currently free for EVs.
 - What's your future prediction?



• Subsidy for Electric Vehicle Purchase (£5000 in 2011)

- Guess what will happen to that?
- Well, it already has. (PHEV now £0, EV now £2500)
- Whereas, Germany is increasing subsidies.



5. CURRENT LIMITATIONS OF

o Security of Supply, Cost & Weight

- Battery Lithium & Cobalt (controlled from Chin Australia, Argentina, Congo) maybe even Cornv
- Costly & heavy battery (can easily weigh half a
- Rare motor magnets Neodymium (Brazil, China Lanka and Australia).

• Once again, we are causing mining misery and plundering rare earth resources.

Battery Life-time cost may be very high

- Discharges and charges deteriorate capacity kwh, (or range).
- Current petrol cars expected to last 10 years, more for diesel.
- Most EV batteries now warranted for 5-7 years, last 10-20yrs.
- Cost of disposal or recycling of millions of batteries.

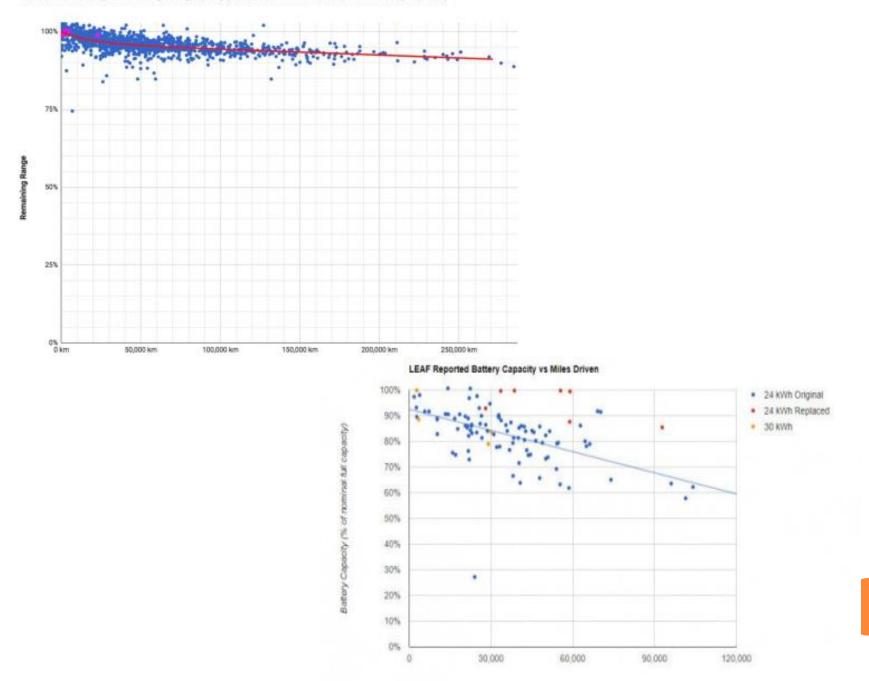
• Charge time and availability of chargers

- Multiple types of public charger, often out of service.
- All but DC rapid chargers will take 8-20 hours (if car is capable).

6. PERFORMANCE LIMITATIONS

o Range

- Range poor on some small models (as low as 70-100 miles), majority up to 150-250 miles. 2021 has seen 300 miles+.
- Higher range usually means larger / heavier battery.
- Wet or cold, using electrical heater, lights or A/C reduces range.
- Range display has units of miles/kwh. 50kwh at 4m/kwh=200m
- Capacity (range) will decrease with each (fast) charge cycle (Tesla is pretty good), but others can be poorer. Loses 20-30+%.
- A 200 mile range in the Summer, can reduce to 150 in Winter.


• Speed, Acceleration

• High speed or high acceleration will kill range, because of wind resistance, even 70mph.

• Towing caravans or trailers

- Electric motors have superior starting torque at zero speed.
- But not for long! Any additional tow weight will severely reduce the range, so many cars unsuitable.

Tesla Model S/X Mileage vs Remaining Battery Capacity (Same chart as above but at full scale for better perspective)

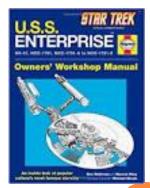
HOWEVER, THERE ARE PERFORMANCE PROS FOR EVS...

- Instant full torque from rest.
- (Petrol Ford Focus = 170Nm, MG5EV = 260Nm, Tesla = 441Nm)
- MG5 acceleration in boy racer mode, 7.5 secs to 60.
- Teslas can get to 60mph in 4 secs (dual motor)
- Plenty of engine power.
- MG5 Capable of over 115mph, Tesla 162mph
- Petrol Ford Focus = 125hp. MG5 = 156hp. Tesla = 449hp
- **Regenerative braking** recovers some energy back into the battery. Less use of brake pads.
- But only if you brake! Unlikely on a motorway.
- o Nice and quiet

7. MANUFACTURERS & SUPPLIERS

• Skill & Technology change.

- New high voltage inverters, 3ph motors, DC-DC, and power distribution design, HV heater, A/C, brake vacuum, AC charger, HV battery & charge control, regen braking, safe S/W.
- Extra safety risks building and using HV batteries.
- Development costs and time for better cell chemistries.
 - Current batteries have taken over 100 years, and still lacking.
 - Fire risks for lithium (new chemistries needed LiFePo4).
 - Rapid charging deterioration and charge capacity loss.
- o Investments for production plant and designs.
 - Battery plants? (BMW Hams Hall, JLR at i54, Coventry)
- o Affordability (£5k-£40k+ premium now).
- o Security of rare material supply, Li, Co, Nd etc.
- Vans, Trucks and buses possible? (all long distance)

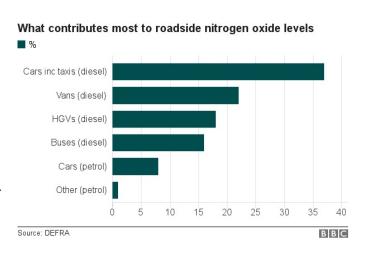


8. DEALERS & REPAIRERS

- Handling high voltage batteries training.
- Fire risks when handling, shipping or disposing.
- Handling high current electronics, motors and power connections.
- Existing small garages, can they cope?
 - Training / New Equipment on EVs.
 - Testing facility costs
 - Insulation tape nope?
 - Crash repairs
 - Charging facilities
 - Suggest a lot will be out of business in 10 years.
- Home Repairs?
 - Haynes manuals?

9. EXISTING ICE CAR & VAN OWNERS

Incentives to change


- Subsidy has been reduced from £5000 to £1,500 for pure EV.
- Scrappage scheme? Not yet.

• Alternatives to battery electric?

- Will there be any by 2030?
- Alternative fuels, hydrogen engines
- Hydrogen fuel cell cars seem completely ignored by Gov't.

Most polluting vehicles

- If you felt guilty, diesel
- is bad for NOx.
- Hybrids can be worse than diesel
- for CO2 emission in general.

WHAT NEEDS TO BE DONE TO MAKE IT HAPPEN? A FEW THOUGHTS...

Battery Technology improvement

- Range improvement, new chemistries, more miles per kwh (currently 2 to 4 on 50-70kwh).
- Need for overcoming disparity between petrol and lithium energy by weight.
- Investment to develop, assuming there are new chemistries, or super capacitors.
- Charge time improvement, less capacity degradation, equivalent to petrol fillup.
- Less weight, Less volume, less complexity,

Public Charging Points improvement

- Fast & slow charge points massive increase, to allow long trips, and improved reliability.
- National political drive to give a single account method and simple access.
- Introduce cohesion and fines on charging point suppliers. (£620m allocated, but little evidence)

• Incentives

- Increase grant incentives
- Scrappage scheme
- Reasonable taxation

• UN's Intergovernmental Panel

- Recommends switch to electric cars to reduce carbon emissions
- How is this possible if power stations use fossil fuels?

• National Grid reinforcement

- Meet demand increase for charging (and home heating using heat pumps).
- More renewable resources, tidal, geothermal, and wind power (but solar a dead duck now).

• HAS THE GOVERNMENT THOUGHT THIS THROUGH, I wonder?

WHAT THE GOVERNMENT IS ALLOWING OR NOT DOING...

THE 10 POINT PLAN (Nov 2020)

• Allows Biomass burning - (e.g.DRAX)

- Trees being lopped, pellitised and imported not sustainable.
- Huge CO2 emission at Drax (but not counted in UK emissions!).

• No mention of TIDAL power

- No investment or promotion forthcoming.
- Yet, tidal guarantees 24 hour generation.

o No mention of GEOTHERMAL energy

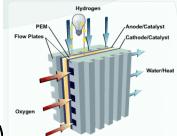
• Plenty of free heat, but no investment.

o No mention of "green" hydrogen.

- Precious little infrastructure currently, or investment.
- "Blue" hydrogen only mentioned, still causes emissions from hydrocarbons.

• Govt still issuing licences for oil & gas exploration.

• But still no really suitable house heating alternative.

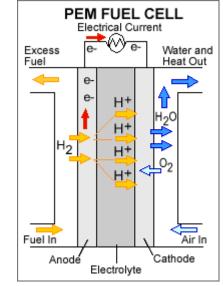

My Personal View...

• Electric cars are amazing, but...

- Batteries still don't meet a diesel range, except by getting larger, and the recharge time is long vs fossil fuel.
- OK for 90% of journeys....Unless it is ...
- Combined EV and a Zero Emission range extender.
- Enter the Hydrogen Fuel Cell (PEM).
 - The energy in 1 kg of hydrogen gas is almost 3 times 1kg of petrol (H2 = 33kwh/kg, Petrol = 12kwh/kg)

o Hydrogen Infrastructure

- California is leading the funding and building of hydrogen fuelling stations for FCEVs. Over 40 in CA.
- As of 2021, UK hydrogen stations total 11.
- Average of 5 minutes to fill a vehicle with hydrogen.
- 1kg of hydrogen currently costs about £10.
- Toyota Mirai can achieve 400+ miles on a tank of H2 (5.5kg).



Fuel Cells - The Down Side

Proton Exchange Membrane (PEM)

- Of course there are some problems...
 - PEMs use a **platinum** catalyst anode.
- PEM cars are a little expensive currently.
 - £65,000 for a Toyota Mirai.
 - Durability may still be an issue for transport.
 - Better and cheaper materials are needed.
 - Each cell gives around 1 volt, so many cells needed.
- PEMs really need pure hydrogen, but also need a lot of controlling with plumbing, and take a while to start up. Still need a battery for acceleration.
- Hydrogen dispensing almost non-existent
 - London, Swindon, Abergavenny, Sheffield
 - Current fuel refiners will have to change to H2.
 - Needs an emission free way to produce the H2.

Electrolyte is a copolymer of poly(tetrafluoroethyl ene) and polysulfonyl fluoride vinyl ether

SO, ARE THERE ANY H₂ CARS (IN 2022)?

• The Toyota Mirai

Can cost up to £55 to refill for 400 miles

• The Honda Clarity FCV

• A little company in Wales (Powys) makes the Rasa (Riversimple)

• 250mpg equiv

• Hyundai

• NEXO

POLYMER ELECTROLYTE FUEL CELL/AC Synchronized Motor

Horsepower (SAE net): 174 hp (130 kW) @ 4,501-9,028 rpm

Torque: 221 lb.-ft. (300 Nm) @ 0-3,500 rpm

Battery: 1.7-kWh Lithium-ion

Hydrogen capacity: 12 lbs. (5.5 kg)

Tank volume: 37 gallons (141 L) pressure: 10,000 psi (70 MPa) Range: 366 miles (589 Km)

EPA city/highway: 69 / 67 mpg-e

Nominal service

Assembly site: Tochigi, Japan

Application tested: '17 Honda Clarity

•Tempted? Pure EV or FCEV

Will EVs or FCEVs help with reducing CO2 and climate change? Not entirely, no. Brake dust better, but...
EVs Particle matter from tyres and shifted CO2.

A FEW BATTERY EVS IN UK

•That's it folks

o https://www.gridwatch.templar.co.uk/

LFP batteries

Triphylite LiFePO4